Wiggles and Finitely Discontinuous k-to-1 Functions Between Graphs

نویسندگان

  • John Baptist Gauci
  • Anthony J. W. Hilton
  • Dudley Stark
چکیده

The graphs we shall consider are topological graphs that is they lie in R3 and each edge is homeomorphic to [0, 1]. If a graph is simple, that is it has no loops or multiple edges, then each edge may be taken to be a straight line joining the two vertices at the ends of the edge. A function is k-to-1 if each point in the codomain has precisely k preimages in the domain. Given two graphs G and H, and an integer k ≥ 1, Jo Heath proved the surprising result that there exists a finitely discontinuous k-to-1 function f from G onto H if and only if |E(G)| − |V (G)| ≤ k (|E(H)| − |V (H)|) if k ≥ 3 , and |E(G)| − |V (G)| = 2 (|E(H)| − |V (H)|) if k = 2 . Such functions often involve a limit construction, which we call a wiggle. In this talk, I shall discuss a simple formula (related to Jo Heath’s result) which counts the number of wiggles. I shall also discuss the special case when the finitely discontinuous function f can actually be chosen to be continuous. Much of the talk will be joint work from the past with Jo Heath, or current work with my student, John Gauci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exactly K-to-1 Maps: from Pathological Functions with Finitely Many Discontinuities to Well-behaved Covering Maps

Many mathematicians encounter k-to-1 maps only in the study of covering maps. But, of course, k-to-1 maps do not have to be open. This paper touches on covering maps, and simple maps, but concentrates on ordinary k-to-1 functions (both continuous and finitely discontinuous) from one metric continuum to another. New results, old results, and ideas for further research are given; and a baker’s do...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

Planar Graphs and Covers

Planar locally finite graphs which are almost vertex transitive are discussed. If the graph is 3-connected and has at most one end then the group of automorphisms is a planar discontinuous group and its structure is wellknown. A general result is obtained for such graphs where no restriction is put on the number of ends. It is shown that such a graph can be built up from one-ended or finite pla...

متن کامل

The minus k-domination numbers in graphs

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2013